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Requirements & Solutions

AP1: Material science
AP2: Video mining

AP3: Language processing
AP4: Image analysis in

medicine
Data /
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Data indexing

Deep learning
Decomposable optimization
Multi-modal analysis
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Projects done

+ Multi-purpose Locality Sensitive Hashing (mpLSH)

+ Deep Tensor Neural Networks
+ Explaining Non-linear Machine Learning

+ Multi-class SVM for Extreme Classification

+ Parallel Matrix Factorization

+ Polynomial-time Message Passing for High-order Potentials
+ Performance Guarantee of Approximate Bayesian Learning

+ Multi-modal Source Power Co-modulation (mSPoC)
+ Transductive Conditional Random Field Regression (TCRFR)
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Data Indexing

A key technology for sub-linear time nearest neighbor (NN) search.

Required new technologies:
+ Multi-purpose LSH for the following applications:
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+ General purpose indexing at data collection phase (without fixed analysis

plan).
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+ Materical search with optimized properties (e.g., stability, utility, etc.)

+ Imagel/video retrieval with adjustable query (e.g., preference +

closeness).
Data collection
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Projects done:

Indexing
(time-consuming)

L2-LSH
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NN search
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wi)  Multi-purpose LSH?

+ Multi-purpose Locality Sensitive Hashing (mpLSH)
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Deep Learning

Neural networks are scalable learning machines for capturing complex structure in big data.

Required new technologies:

+ Architecture design for new applications
+ Explaining learning machines

+ Insights into target problems

input image Forward Propagation Relevance Propagation heatmap
(Bach et al. 2015)

Projects done:

+ Deep Tensor Neural Networks
+ Explaining Non-linear Machine Learning
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Decomposable Optimization

Decomposablity is a key for efficient/parallel computation.

+ Find an equivalent/approximate decomposable formulation of non-decomposable problems.
+ Algorithm design for efficient/parallel computation.
+ Assessment of accuracy of approximation.
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Multi-modal Analysis

Big data can be multi-modal with heterogeneity (e.qg., different S/N ratios, time/spatial resolutions)

Required new technologies:

+ Information mixing/propagation. S %+
+ Common (latent) feature extraction. N

mSPoC
EEG pattern
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High temporal res. High spatial res. mSPoC
(poor spatial res.) (poor temporal res.) pattern

Source localisation of
mSPoC EEG pattern

Estimated
P r()j ects done: (densely available) (sparsely available) |atent structure

+ Multi-modal Source Power Co-modulation (mSPoC)
+ Transductive Conditional Random Field Regression (TCRFR)
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Projects done

Data indexing:

+ Multi-purpose Locality Sensitive Hashing (mpLSH)

Deep learning:

+ Deep Tensor Neural Networks
+ Explaining Non-linear Machine Learning

Decomposable Optimization:

+ Multi-class SVM for Extreme Classification
+ Parallel Matrix Factorization

+ Polynomial-time Message Passing for High-order Potentials
+ Performance Guarantee of Approximate Bayesian Learning

Multi-modal Analysis:
+ Multi-modal Source Power Co-modulation (mSPoC)
+ Transductive Conditional Random Field Regression (TCRFR)
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Multiple-purpose
Locality Sensitive Hashing



Nearest neighbor search (NNS)

Naive implementation (linear scan) requires O(N') time.

T = argmin||qg — z,[|*.
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Locality sensitive hashing (LSH)

LSH enables approximate NNS in time for




Locality sensitive hashing (LSH)

LSH enables approximate NNS in time for

I
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Only samples in the same bucket should be evaluated.
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Different similarity requires different hashing

Li2(q,z) = |q — x| L2-LSH for L2 similarity [Datar et al. 2004]

Leos(q, @) =1 — m sign-LSH for cosine similarity [Coemans&Williamson 1995]

s (@) = [ (a @ +1)]

a,b

o Lp(g ) = —q'x simple-LSH for inner product (IP) similarity [Neyshabur&Srebro 2015]
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Different similarity requires different LSH codes

Multi-purpose similarity
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General LSH coding for multi-purposes?




Multi-Purpose Locality Sensitive Hashing (mpLSH)

Multi-purpose similarity:
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Multi-metric search
by cover tree

Multi-metric in code space:
Deal{a™} @) = g1 (g 1 [h(@) = 15, @) + Lo Boom |8 (@ = 75.m(@)] )



mpLSH: Theoretical and empirical performance validation

.- Theorem 1 For 4*) = A" = 0,Yw, i.c., Lp({q™)},x)) is the cosine sim-
+ (Conditional) LSH property ilarity, it holds that P (Dea({q™)}, ) = 0) = F#(1 + 1L, ({g®)}, )T

the()retica”y guaranteed_ Theorem 2 For v(*) = n(*) = 0,Yw, i.c., Lnp({q™)},)) is the IP similar
ity, the expectation of the mp-LSH-CA code similarity is bounded as
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+ Approximate search performance e

Knn=5,T=128
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mp-LSH-C -

validated on several read data. \ — Proposed 1
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IP Mixed
+ Computational and memory efficiency

proven on large data (100M samples).
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