
1 © BBDC© 2013 Berlin Big Data Center • All Rights Reserved1 © BBDC

Emma: Declarative Dataflows

for Scalable Data Analysis

Alexander Alexandrov, Georgi Krastev, Bernd Louis,
Volker Markl

FG DIMA, TU Berlin

2 © BBDC2 © BBDC

2

3 © BBDC3 © BBDC

3

4 © BBDC
4 © 2013 Berlin Big Data Center • All Rights Reserved

4 © BBDC

MOTIVATION

5 © BBDC
5

5 © BBDC

A Billion $$$ Mantra

SQL Relations RDBMS

A simple, high-level language for querying data (Chamberlin ’74).

An effective, formal foundation based on relational algebra and calculus (Codd ’71).

An efficient, low-level execution environment tailored towards the data (Selinger ’79).

Declarative Data Processing

6 © BBDC
6

6 © BBDC

With 40+ Years of Success

Declarative Data Processing

SQL Relations RDBMS

7 © BBDC
7

7 © BBDC

Is Being Revised

Declarative Data Processing

SQL Relations RDBMS

Distributed
Collections

Parallel Dataflow
Engines

Second-Order
Functions

8 © BBDC
8 © 2013 Berlin Big Data Center • All Rights Reserved

8 © BBDC

USE CASE: MINING MOVIE METADATA

9 © BBDC
9 © 2013 Berlin Big Data Center • All Rights Reserved

9 © BBDC

Data: People and Movies related by Credits

10 © BBDC
10 © 2013 Berlin Big Data Center • All Rights Reserved

10 © BBDC

Data: People and Movies related by Credits

11 © BBDC
11 © 2013 Berlin Big Data Center • All Rights Reserved

11 © BBDC

Data: People and Movies related by Credits

12 © BBDC
12 © 2013 Berlin Big Data Center • All Rights Reserved

12 © BBDC

Data: People and Movies related by Credits

13 © BBDC
13 © 2013 Berlin Big Data Center • All Rights Reserved

13 © BBDC

Task: Finding Director’s Muses

• Let 𝑚𝑐𝑎
𝑑 be the number of movies

shared between a specific director-

actor combination 𝑑, 𝑎 .

• Find 𝑑, 𝑎 pairs such that

– The actor was cast in at least two of the

director’s movies;

– No other actor was cast in more than

m + 1 movies of the same director.

𝑑 ∈ 𝑃, 𝑎 ∈ 𝑃.

∄𝑥 ∈ 𝑃. 𝑚𝑐𝑥
𝑑 > 𝑚𝑐𝑎

𝑑 + 1

𝑚𝑐𝑎
𝑑 > 1

𝑀 = 𝑑, 𝑎,𝑚 | 𝑎 𝑎𝑐𝑡𝑠 𝑖𝑛 𝑚 ∧ 𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑠 𝑚

𝑚𝑐𝑎
𝑑 = 𝑚 | 𝑀(𝑑, 𝑎,𝑚)

14 © BBDC
14 © 2013 Berlin Big Data Center • All Rights Reserved

14 © BBDC

Examples

• Director

– Christian Petzold

– Michelangelo Antonioni

– Tim Burton

• Muse

– Nina Hoss (collaborated in 5 movies)

– Monica Vitti (collaborated in 5 movies)

– Helena Bonham Carter (collaborated in

7 movies)

15 © BBDC
15 © 2013 Berlin Big Data Center • All Rights Reserved

15 © BBDC

THE LOST DECLARATIVITY

16 © BBDC
16

16 © BBDC

DSL Design: Choices & Pitfalls

• Domain Specific Languages (DSLs) can be designed and implemented in

various different ways.

• The general design strategy greatly affects

– simplicity and usability,

– optimization and abstraction potential,

– user productivity.

17 © BBDC
17

17 © BBDC

The following examples illustrate how modern DSLs
for distributed collection processing are affected by

their design strategy.

18 © BBDC
18

18 © BBDC

Collection Processing DSLs

19 © BBDC
19 © 2013 Berlin Big Data Center • All Rights Reserved

19 © BBDC

Collection Processing DSLs

Standalone

SQL

20 © BBDC
20 © 2013 Berlin Big Data Center • All Rights Reserved

20 © BBDC

𝑀 = 𝑑, 𝑎,𝑚 | 𝑎 𝑎𝑐𝑡𝑠 𝑖𝑛 𝑚 ∧ 𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑠 𝑚

21 © BBDC
21 © 2013 Berlin Big Data Center • All Rights Reserved

21 © BBDC

𝑀 = 𝑑, 𝑎,𝑚 | 𝑎 𝑎𝑐𝑡𝑠 𝑖𝑛 𝑚 ∧ 𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑠 𝑚

SQL

SELECT d.name AS director,
a.name AS actor,
m.title.title AS movie

FROM people AS a,
credits AS ac,
movies AS m,
credits AS dc,
people AS d

WHERE d.id = dc.personID
AND m.id = dc.movieID
AND a.id = ac.personID
AND m.id = ac.movieID
AND dc.creditType = 'director'
AND ac.creditType = 'actor'

22 © BBDC
22 © 2013 Berlin Big Data Center • All Rights Reserved

22 © BBDC

1
1

.7
4

1
1

.5
4

1
1

.8
7

1
2

.1
2

1
1

.3
8

1
8

.3
7

S PA RK
S Q L

SPA RK
D A TA FRA ME

EMMA

RUNTIME FOR M (IN SECONDS)

variant 1 variant 2 variant 3

𝑀 = 𝑑, 𝑎,𝑚 | 𝑎 𝑎𝑐𝑡𝑠 𝑖𝑛 𝑚 ∧ 𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑠 𝑚

Spark SQL

val M = spark.sql (
s"""

|SELECT d.name AS director,
| a.name AS actor,
| m.title.title AS movie
|FROM people AS a,
| credits AS ac,
| movies AS m,
| credits AS dc,
| people AS d
|WHERE d.id = dc.personID
|AND m.id = dc.movieID
|AND a.id = ac.personID
|AND m.id = ac.movieID
|AND dc.creditType = 'director'
|AND ac.creditType = 'actor'

""" . stripMargin) Variant 1:
Baseline version.

23 © BBDC
23 © 2013 Berlin Big Data Center • All Rights Reserved

23 © BBDC

1
1

.7
4

1
1

.5
4

1
1

.8
7

1
2

.1
2

1
1

.3
8

1
8

.3
7

S PA RK
S Q L

SPA RK
D A TA FRA ME

EMMA

RUNTIME FOR M (IN SECONDS)

variant 1 variant 2 variant 3

𝑀 = 𝑑, 𝑎,𝑚 | 𝑎 𝑎𝑐𝑡𝑠 𝑖𝑛 𝑚 ∧ 𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑠 𝑚

Spark SQL

val M = spark.sql (
s"""

|SELECT d.name AS director,
| a.name AS actor,
| m.title.title AS movie
|FROM people AS a,
| credits AS ac,
| movies AS m,
| credits AS dc,
| people AS d
|WHERE d.id = dc.personID
|AND a.id = ac.personID
|AND m.id = dc.movieID
|AND m.id = ac.movieID
|AND ac.creditType = 'actor'
|AND dc.creditType = 'director'

""" . stripMargin) Variant 2:
After swapping WHERE clauses.

24 © BBDC
24 © 2013 Berlin Big Data Center • All Rights Reserved

24 © BBDC

1
1

.7
4

1
1

.5
4

1
1

.8
7

1
2

.1
2

1
1

.3
8

1
8

.3
7

S PA RK
S Q L

SPA RK
D A TA FRA ME

EMMA

RUNTIME FOR M (IN SECONDS)

variant 1 variant 2 variant 3

𝑀 = 𝑑, 𝑎,𝑚 | 𝑎 𝑎𝑐𝑡𝑠 𝑖𝑛 𝑚 ∧ 𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑠 𝑚

Spark SQL

val M = spark.sql (
s"""

|SELECT d.name AS director,
| a.name AS actor,
| m.title.title AS movie
|FROM people AS a,
| people AS d,
| credits AS ac,
| credits AS dc,
| movies AS m
|WHERE d.id = dc.personID
|AND a.id = ac.personID
|AND m.id = dc.movieID
|AND m.id = ac.movieID
|AND ac.creditType = 'actor'
|AND dc.creditType = 'director'

""" . stripMargin) Variant 3:
After swapping FROM clauses.

25 © BBDC25 © BBDC

25

Collection Processing DSLs

Standalone

SQL

26 © BBDC26 © BBDC

26

Collection Processing DSLs

Standalone

SQL

Declarative
Optimizable
Integrated

27 © BBDC27 © BBDC

27

Collection Processing DSLs

Standalone Embedded

Shallow
SQL

Declarative
Optimizable
Integrated

28 © BBDC28 © BBDC

28

Collection Processing DSLs

Standalone

Based on Types

SQL

Table

DataFrame Dataset

DataSet

RDD

Flink :

Spark :

Embedded

ShallowDeep

29 © BBDC
29 © 2013 Berlin Big Data Center • All Rights Reserved

29 © BBDC

1
1

.7
4

1
1

.5
4

1
1

.8
7

1
2

.1
2

1
1

.3
8

1
8

.3
7

S PA RK
S Q L

SPA RK
D A TA FRA ME

EMMA

RUNTIME FOR M (IN SECONDS)

variant 1 variant 2 variant 3

𝑀 = 𝑑, 𝑎,𝑚 | 𝑎 𝑎𝑐𝑡𝑠 𝑖𝑛 𝑚 ∧ 𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑠 𝑚

val M = spark.sql (
s"""

|SELECT d.name AS director,
| a.name AS actor,
| m.title.title AS movie
|FROM people AS a,
| people AS d,
| credits AS ac,
| credits AS dc,
| movies AS m
|WHERE d.id = dc.personID
|AND a.id = ac.personID
|AND m.id = dc.movieID
|AND m.id = ac.movieID
|AND ac.creditType = 'actor'
|AND dc.creditType = 'director'

""" . stripMargin)

Spark SQL

Variant 1:
Baseline version.

30 © BBDC
30 © 2013 Berlin Big Data Center • All Rights Reserved

30 © BBDC

1
1

.7
4

1
1

.5
4

1
1

.8
7

1
2

.1
2

1
1

.3
8

1
8

.3
7

S PA RK
S Q L

SPA RK
D A TA FRA ME

EMMA

RUNTIME FOR M (IN SECONDS)

variant 1 variant 2 variant 3

𝑀 = 𝑑, 𝑎,𝑚 | 𝑎 𝑎𝑐𝑡𝑠 𝑖𝑛 𝑚 ∧ 𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑠 𝑚

Spark DataFrame

val M =
join(

join(
join(

join(
a,
ac.filter ($" ac.creditType " === "actor"),
$" ac.personID " === $"a.id"),

m,
$" ac.movieID " === $"m.id"),

dc.filter ($" dc.creditType " === "director"),
$" dc.movieID " === $"m.id"),

d,
$" dc.personID " === $"d.id"

).select(
$"d.name" as "director" ,
$"a.name" as "actor" ,
$" m.title.title " as "movie"

)

Variant 1:
Baseline version.

31 © BBDC
31 © 2013 Berlin Big Data Center • All Rights Reserved

31 © BBDC

1
1

.7
4

1
1

.5
4

1
1

.8
7

1
2

.1
2

1
1

.3
8

1
8

.3
7

S PA RK
S Q L

SPA RK
D A TA FRA ME

EMMA

RUNTIME FOR M (IN SECONDS)

variant 1 variant 2 variant 3

𝑀 = 𝑑, 𝑎,𝑚 | 𝑎 𝑎𝑐𝑡𝑠 𝑖𝑛 𝑚 ∧ 𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑠 𝑚

Spark DataFrame

val M =
join(

join(
join(

join(
a,
ac,
$" ac.personID " === $"a.id"),

m,
$" ac.movieID " === $"m.id"),

dc,
$" dc.movieID " === $"m.id"),

d,
$" dc.personID " === $"d.id"

).select(
$"d.name" as "director" ,
$"a.name" as "actor" ,
$" m.title.title " as "movie"

) .filter(
$" dc.creditType " === "director" &&
$" ac.creditType " === "actor"

)

Variant 2:
After reordering filter calls.

32 © BBDC
32 © 2013 Berlin Big Data Center • All Rights Reserved

32 © BBDC

1
1

.7
4

1
1

.5
4

1
1

.8
7

1
2

.1
2

1
1

.3
8

1
8

.3
7

S PA RK
S Q L

SPA RK
D A TA FRA ME

EMMA

RUNTIME FOR M (IN SECONDS)

variant 1 variant 2 variant 3

𝑀 = 𝑑, 𝑎,𝑚 | 𝑎 𝑎𝑐𝑡𝑠 𝑖𝑛 𝑚 ∧ 𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑠 𝑚

Spark DataFrame

val M =
join(

join(
join(

join(
m,
dc,
$" dc.movieID " === $"m.id"),

d,
$" dc.personID " === $"d.id"),

ac,
$" ac.movieID " === $"m.id"),

a,
$" ac.personID " === $"a.id"

).select(
$"d.name" as "director" ,
$"a.name" as "actor" ,
$" m.title.title " as "movie"

).filter(
$" dc.creditType " === "director" &&
$" ac.creditType " === "actor"

)

Variant 3:
After reordering join calls.

33 © BBDC33 © BBDC

33

Collection Processing DSLs

Based on Types

Table

DataFrame Dataset

DataSet

RDD

Flink :

Spark :

Standalone

SQL

Embedded

Deep Shallow

34 © BBDC34 © BBDC

34

Collection Processing DSLs

Based on Types

Declarative
Optimizable
Integrated second-order language
Integrated first-order language

Table

DataFrame Dataset

DataSet

RDD

Flink :

Spark :

Standalone

SQL

Embedded

Deep Shallow

35 © BBDC35 © BBDC

35

Collection Processing DSLs

Standalone Embedded

ShallowDeep

Based on Types

SQL

Table

DataFrame Dataset

DataSet

RDD

Flink :

Spark :

36 © BBDC
36 © 2013 Berlin Big Data Center • All Rights Reserved

36 © BBDC

𝐶 = 𝑑, 𝑎,𝑚𝑐𝑑
𝑎 | 𝑀 𝑑, 𝑎, − ; 𝑚𝑐𝑑

𝑎 > 1

Spark Dataset / RDD

// Dataset API (variant 1)
val C = M

. groupByKey { case (d, a, m) => (d, a) }

. mapGroups ((key, it) => (key, it.size.toLong))

.filter { case (_, mc) => mc > 1 }

// RDD API (variant 1)
val C = M

. groupBy { case (d, a, m) => (d, a) }

.map { case (key, it) => (key, it.size.toLong) }

.filter { case (_, mc) => mc > 1 }

Variant 1:
Build groups, then compute (e.g., count) per group.

37 © BBDC
37 © 2013 Berlin Big Data Center • All Rights Reserved

37 © BBDC

𝐶 = 𝑑, 𝑎,𝑚𝑐𝑑
𝑎 | 𝑀 𝑑, 𝑎, − ; 𝑚𝑐𝑑

𝑎 > 1

5
.0

2 6
.1

6

3
.2

7 3
.9

9

S PA RK
D A TA SET

SPA RK
RD D

EMMA

RUNTIME FOR C (IN SECONDS)

variant 1 variant 2

Spark Dataset / RDD

// Dataset API (variant 1)
val C = M

. groupByKey { case (d, a, m) => (d, a) }

. mapGroups ((key, it) => (key, it.size.toLong))

.filter { case (_, mc) => mc > 1 }

// RDD API (variant 1)
val C = M

. groupBy { case (d, a, m) => (d, a) }

.map { case (key, it) => (key, it.size.toLong) }

.filter { case (_, mc) => mc > 1 }

Variant 1:
Build groups, then compute (e.g., count) per group.

38 © BBDC
38 © 2013 Berlin Big Data Center • All Rights Reserved

38 © BBDC

𝐶 = 𝑑, 𝑎,𝑚𝑐𝑑
𝑎 | 𝑀 𝑑, 𝑎, − ; 𝑚𝑐𝑑

𝑎 > 1

5
.0

2 6
.1

6

3
.2

7 3
.9

9

S PA RK
D A TA SET

SPA RK
RD D

EMMA

RUNTIME FOR C (IN SECONDS)

variant 1 variant 2

Spark Dataset / RDD

// Dataset API (variant 2)
val C = M

. groupByKey { case (d, a, m) => (d, a) }

.count()

.filter { case (_, mc) => mc > 1 }

// RDD API (variant 1)
val C = M

. groupBy { case (d, a, m) => (d, a) }

.map { case (key, it) => (key, it.size.toLong) }

.filter { case (_, mc) => mc > 1 }

Variant 2:
Build groups and compute (e.g., count) in one step.

39 © BBDC
39 © 2013 Berlin Big Data Center • All Rights Reserved

39 © BBDC

𝐶 = 𝑑, 𝑎,𝑚𝑐𝑑
𝑎 | 𝑀 𝑑, 𝑎, − ; 𝑚𝑐𝑑

𝑎 > 1

5
.0

2 6
.1

6

3
.2

7 3
.9

9

S PA RK
D A TA SET

SPA RK
RD D

EMMA

RUNTIME FOR C (IN SECONDS)

variant 1 variant 2

Spark Dataset / RDD

// Dataset API (variant 2)
val C = M

. groupByKey { case (d, a, m) => (d, a) }

.count()

.filter { case (_, mc) => mc > 1 }

// RDD API (variant 2)
val C = M

.map { case (d, a, m) => ((d, a), 1L) }

. reduceByKey ((mc1, mc2) => mc1 + mc2)

.filter { case (_, mc) => mc > 1 }

Variant 2:
Build groups and compute (e.g., count) in one step.

40 © BBDC40 © BBDC

40

Collection Processing DSLs

Standalone Embedded

ShallowDeep

Based on Types

SQL

Table

DataFrame Dataset

DataSet

RDD

Flink :

Spark :

41 © BBDC41 © BBDC

41

Collection Processing DSLs

Standalone Embedded

ShallowDeep

Based on Types

SQL

Table

DataFrame Dataset

DataSet

RDD

Flink :

Spark :

Declarative
Optimizable
Integrated

`

42 © BBDC42 © BBDC

42

Collection Processing DSLs

Standalone Embedded

ShallowDeep

Based on Types

SQL

Based on Quotation

Emma DataBag

compiles to Flink / Spark

Table

DataFrame Dataset

DataSet

RDD

Flink :

Spark :

43 © BBDC
43 © 2013 Berlin Big Data Center • All Rights Reserved

43 © BBDC

1
1

.7
4

1
1

.5
4

1
1

.8
7

1
2

.1
2

1
1

.3
8

1
8

.3
7

S PA RK
S Q L

SPA RK
D A TA FRA ME

EMMA

RUNTIME FOR M (IN SECONDS)

variant 1 variant 2 variant 3

𝑀 = 𝑑, 𝑎,𝑚 | 𝑎 𝑎𝑐𝑡𝑠 𝑖𝑛 𝑚 ∧ 𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑠 𝑚

val M = spark.sql (
s"""

|SELECT d.name AS director,
| a.name AS actor,
| m.title.title AS movie
|FROM people AS a,
| people AS d,
| credits AS ac,
| credits AS dc,
| movies AS m
|WHERE d.id = dc.personID
|AND a.id = ac.personID
|AND m.id = dc.movieID
|AND m.id = ac.movieID
|AND ac.creditType = "actor"
|AND dc.creditType = "director"

""" . stripMargin)

Emma Features

Integrated
SELECT – FROM – WHERE syntax.

44 © BBDC
44 © 2013 Berlin Big Data Center • All Rights Reserved

44 © BBDC

1
1

.7
4

1
1

.5
4

1
1

.8
7

1
2

.1
2

1
1

.3
8

1
8

.3
7

S PA RK
S Q L

SPA RK
D A TA FRA ME

EMMA

RUNTIME FOR M (IN SECONDS)

variant 1 variant 2 variant 3

𝑀 = 𝑑, 𝑎,𝑚 | 𝑎 𝑎𝑐𝑡𝑠 𝑖𝑛 𝑚 ∧ 𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑠 𝑚

val M = spark.sql (
s"""

|yield d.name,
| a.name,
| m.title.title
|FROM people AS a,
| people AS d,
| credits AS ac,
| credits AS dc,
| movies AS m
|WHERE d.id = dc.personID
|AND a.id = ac.personID
|AND m.id = dc.movieID
|AND m.id = ac.movieID
|AND ac.creditType = "actor"
|AND dc.creditType = "director"

""" . stripMargin)

Emma Features

Integrated
SELECT – FROM – WHERE syntax.

45 © BBDC
45 © 2013 Berlin Big Data Center • All Rights Reserved

45 © BBDC

1
1

.7
4

1
1

.5
4

1
1

.8
7

1
2

.1
2

1
1

.3
8

1
8

.3
7

S PA RK
S Q L

SPA RK
D A TA FRA ME

EMMA

RUNTIME FOR M (IN SECONDS)

variant 1 variant 2 variant 3

𝑀 = 𝑑, 𝑎,𝑚 | 𝑎 𝑎𝑐𝑡𝑠 𝑖𝑛 𝑚 ∧ 𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑠 𝑚

val M = spark.sql (
s"""

|yield d.name,
| a.name,
| m.title.title
|for a < - people,
| d < - people,
| ac < - credits,
| dc < - credits,
| m < - movies
|WHERE d.id = dc.personID
|AND a.id = ac.personID
|AND m.id = dc.movieID
|AND m.id = ac.movieID
|AND ac.creditType = "actor"
|AND dc.creditType = "director"

""" . stripMargin)

Emma Features

Integrated
SELECT – FROM – WHERE syntax.

46 © BBDC
46 © 2013 Berlin Big Data Center • All Rights Reserved

46 © BBDC

1
1

.7
4

1
1

.5
4

1
1

.8
7

1
2

.1
2

1
1

.3
8

1
8

.3
7

S PA RK
S Q L

SPA RK
D A TA FRA ME

EMMA

RUNTIME FOR M (IN SECONDS)

variant 1 variant 2 variant 3

𝑀 = 𝑑, 𝑎,𝑚 | 𝑎 𝑎𝑐𝑡𝑠 𝑖𝑛 𝑚 ∧ 𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑠 𝑚

val M = spark.sql (
s"""

|yield d.name,
| a.name,
| m.title.title
|for a < - people,
| d < - people,
| ac < - credits,
| dc < - credits,
| m < - movies
|if d.id == dc.personID
|if a.id == ac.personID
|if m.id == dc.movieID
|if m.id == ac.movieID
|if ac.creditType == "actor"
|if dc.creditType == "director"

""" . stripMargin)

Emma Features

Integrated
SELECT – FROM – WHERE syntax.

47 © BBDC
47 © 2013 Berlin Big Data Center • All Rights Reserved

47 © BBDC

1
1

.7
4

1
1

.5
4

1
1

.8
7

1
2

.1
2

1
1

.3
8

1
8

.3
7

S PA RK
S Q L

SPA RK
D A TA FRA ME

EMMA

RUNTIME FOR M (IN SECONDS)

variant 1 variant 2 variant 3

𝑀 = 𝑑, 𝑎,𝑚 | 𝑎 𝑎𝑐𝑡𝑠 𝑖𝑛 𝑚 ∧ 𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑠 𝑚

1
1

.7
4

1
1

.5
4

1
1

.8
7

1
2

.1
2

1
1

.3
8

1
8

.3
7

1
1

.9
8

S PA RK
S Q L

SPA RK
D A TA FRA ME

EMMA

RUNTIME FOR M (IN SECONDS)

variant 1 variant 2 variant 3

val M = for {
a < - people
d < - people
ac < - credits
dc < - credits
m < - movies
if d.id == dc.personID
if a.id == ac.personID
if m.id == dc.movieID
if m.id == ac.movieID
if ac.creditType == "actor"
if ac.creditType == "director"

} yield (
d.name,
a.name,
m.title.title

)

Emma Features

Integrated
SELECT – FROM – WHERE syntax.

48 © BBDC
48 © 2013 Berlin Big Data Center • All Rights Reserved

48 © BBDC

𝐶 = 𝑑, 𝑎,𝑚𝑐𝑑
𝑎 | 𝑀 𝑑, 𝑎, − ; 𝑚𝑐𝑑

𝑎 > 1

5
.0

2 6
.1

6

3
.2

7 3
.9

9

S PA RK
D A TA SET

SPA RK
RD D

EMMA

RUNTIME FOR C (IN SECONDS)

variant 1 variant 2

// RDD API (variant 1)
val C = M

. groupBy { case (d, a, m) => (d, a) }

.map { case (key, vs) => (key, vs.size.toLong) }

.filter { case (_, mc) => mc > 1 }

Emma Features

Integrated
optimizations for nested collection processing.

49 © BBDC
49 © 2013 Berlin Big Data Center • All Rights Reserved

49 © BBDC

𝐶 = 𝑑, 𝑎,𝑚𝑐𝑑
𝑎 | 𝑀 𝑑, 𝑎, − ; 𝑚𝑐𝑑

𝑎 > 1

5
.0

2 6
.1

6

3
.2

7 3
.9

9

S PA RK
D A TA SET

SPA RK
RD D

EMMA

RUNTIME FOR C (IN SECONDS)

variant 1 variant 2

Emma Features

// Emma API (variant 1)
val C = M

. groupBy { case (d, a, m) => (d, a) }

.map { case Group (key, vs) => (key, vs.size) }

.filter { case (_, mc) => mc > 1 }

5
.0

2 6
.1

6

4
.0

2

3
.2

7 3
.9

9

S PA RK
D A TA SET

SPA RK
RD D

EMMA

RUNTIME FOR C (IN SECONDS)

variant 1 variant 2

Integrated
optimizations for nested collection processing.

50 © BBDC
50 © 2013 Berlin Big Data Center • All Rights Reserved

50 © BBDC

Collection Processing DSLs

Standalone Embedded

ShallowDeep

Based on Types

SQL

Based on Quotation

Emma DataBag

compiles to Flink / Spark

Table

DataFrame Dataset

DataSet

RDD

Flink :

Spark :

51 © BBDC
51 © 2013 Berlin Big Data Center • All Rights Reserved

51 © BBDC

Collection Processing DSLs

Standalone Embedded

ShallowDeep

Based on Types

SQL

Based on Quotation

Emma DataBag

compiles to Flink / Spark

Table

DataFrame Dataset

DataSet

RDD

Flink :

Spark :

Declarative
Optimizable
Integrated

